
An introduction to the Internet of Things and
Embedded Systems using block-based

programming with BIPES and ESP8266 /
ESP32

Rafael Vidal Aroca
Wesley Flavio Gueta

Jorge André Gastmaier Marques
Tatiana Figueiredo Pereira Alves Taveira Pazelli

December 2021 - 1st Edition

Index Card

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 2/96

Table of Contents

Internet of things using BIPES 4
Quick Introduction 4
Bill of Materials 8
Preparation of the ESP8266 or ESP32 board 11
Blinking the on-board LED 15
Digital input and checking a condition 23
Analog input and LDR light sensor 26
Date and time (RTC) 31
Files on the board 33
Checking a Condition (Part 2) 35
Networking: List Wi-Fi networks 36
Networking: Connecting to the Internet 36
Networking: Sending data to the Internet/Cloud 36
Handling errors 41
BIPES: Multiple projects 42
Parallel activities: timers 43
Temperature and humidity sensor 45
Share the dashboard with smartphones and other devices 48
PWM: LED Brightness Control 50
BIPES: Subroutines / functions 52
Controlling devices via the Internet 54
Web client and web server (HTTP) 60

HTTP Client 62
HTTP Client: Sending SMS Messages 63
HTTP Client: Changing color weather rooster 64
HTTP Client: Other Possibilities 73

HTTP Server 74
Integration with Google Home or Amazon Alexa 77

Extra activities 87
Sending email 87
Inertial Measurement Unit - MPU6050 89
RC Servo Motor (for model aircraft) 90
Music 91

BIPES with other platforms 93
Python with Arduino - Snek 93
Others 93

Getting help and helping 93
Final remarks 94
Acknowledgments 95

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 3/96

Internet of things using BIPES

Quick Introduction
BIPES: Block-based Integrated Platform for Embedded Systems

(http://bipes.net.br) is an open-source and free platform created for embedded systems
programming and Internet of Things applications [1].

Embedded systems are present in every part of everyday life: in commerce, industry,
cars, ovens, televisions, copiers, garage doors, alarms, refrigerators, and other devices. An
embedded system is composed of hardware and software that perform a specific task and is
“embedded” in a product. Hence the names: embedded system, embedded hardware, and
embedded software. Several devices are available to implement embedded systems, such
as microprocessors and microcontrollers. Microcontrollers, in particular, are small integrated
circuits (chips), usually of low cost, that need few external components and can implement
an operating logic based on inputs and other information to control outputs and perform
other actions. They are a kind of small and complete computer designed for specific
applications. Embedded software, in general, is what determines the operating logic of an
embedded system.

The figure below shows an overview of an embedded system composed of a
microcontroller and several other devices. However, not all of these components are
necessary for all applications. Thus, each application will determine the need for sensors,
actuators, and other elements in an embedded system.

● Microcontroller: It is an electronic component, usually composed of input
and output ports for electrical signals, by memories and a processor capable
of executing the logic defined by the embedded software or firmware;

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 4/96

http://bipes.net.br

● Sensors: Sensors are devices that detect/measure the state/level of a
specific physical magnitude of the environment, such as temperature,
humidity, lighting, vibration, magnetic field, among others;

● Actuators: Actuators are devices that can change the state of the
environment, such as motors, heaters, electromagnets, and other devices
that can, through microcontroller commands, act on the environment. The
majority of microcontrollers cannot directly drive an actuator, so power circuits
(drivers), which can include transistors or H-bridges, must be used so that
microcontrollers can drive actuators;

● Communication: Some embedded systems may include communication
mechanisms, allowing them to send data to remote monitoring systems or
receive remote commands. This type of connectivity can be wired or wireless,
and it may or may not have an Internet connection;

● Power supply: An embedded system requires a power source to provide
power for its operation. The energy can be obtained from the mains, batteries,
solar panels, among other sources of electrical energy. A trend in some
embedded systems and Internet of Things systems are systems that harvest
energy from the environment, for example, from radio waves;

● User interface: Several embedded systems need to interact with the user,
whether through displays, buttons, keyboards, voice messages, voice
commands, or even through control and visualization interfaces based on
smartphones.

Considering these definitions, the figure below shows an example of the result of the
operation of an embedded system composed of a microcontroller, a temperature sensor, and
a compressor (actuator) controlling the internal temperature of a refrigerator. The
temperature sensor and the microcontroller cost less than a hamburger, and it is possible to
implement different logic and functionalities. In this figure, you can see that every time the
temperature goes above 6 degrees Celsius, something happens, and the temperature starts
to drop. The onboard system detects that the temperature has exceeded 6 degrees Celsius
and activates the refrigerator's compressor, which cools the environment. Consequently, the
temperature sensor also detects this change in the environment. Upon reaching the
temperature of 4 degrees, the actuator is turned off. Thus, in this application, the cycle is
repeated in a control action known as “on-off”, following the logic implemented in the
embedded software.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 5/96

This system could also be connected to the Internet, allowing the desired
temperature setting to be monitored and configured remotely using a smartphone. In
addition, the system could issue alerts and alarms in the event of compressor failure or when
an inappropriate temperature threshold is reached. This association of an embedded
system, with user inputs and monitoring via the Internet, is one example of an Internet of
Things (IoT) system. Thus, thousands of devices are connected to the Internet, such as light
bulbs, smart meters, refrigerators, air conditioners, home assistants, and others.

Still, it is impressive to analyze the advances in recent years in the context of
embedded systems. This book presents hands-on activities using the ESP8266 or the
ESP32 module, both from Espressif Systems. These modules, classified as Systems on
Chips (SoCs), are complete computers, including processor, RAM, FLASH memory to store
programs, WiFi wireless connection, sensors’ inputs, actuators’ outputs, and various other
features. And they cost less than a hamburger! If you think about it, they are much more
powerful than the computer that brought the Apollo Lunar Module to the Moon's surface. See
the figure below for a comparison.

Although the figure doesn't show the ESP32 module in the comparison, it is a device
more powerful than the ESP8266 with several additional features, including a dual-core
processor, Bluetooth, increased memory and processing capacity, and other features. It is
important to note that all explanations and activities presented in this book are illustrated
with examples for the ESP8266, which work equally on the ESP32, occasionally with a few
differences, such as changing the pins numbers because the two modules have different pin
input and output configurations (electronic terminals).

BIPES is used for all activities proposed in this book. Versatile, open, and free, the
BIPES platform allows programming using several microcontroller boards such as ESP32,

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 6/96

ESP8266, Arduino, mBed, among others. Furthermore, the BIPES can be used directly in
web browsers for multiple devices and does not require installing any software, plugin, or
setting a particular configuration. In addition to the ease of development through block
programming, BIPES also offers an Internet of Things platform, enabling the construction of
visualization and remote control panels (dashboards) for IoT applications [2].

Although block-based programming may appear to be focused on educational
applications due to its ease, it has been adopted and used each time more in commercial
and industrial environments. Several advantages have already been noticed: reduction of
development time, decrease in logic failures, greater ease of understanding, and quicker and
easier maintenance. A publication by the Institute of Electrical and Electronics Engineers
(IEEE) released an article talking about the birth of the era of programming without code [3].

As mentioned, this is a quick introduction to the topic. Several quality publications are
available for you to delve into this subject. The focus here is to guide you through quick and
easy activities to implement IoT systems practically.

References:

[1] AGDS Junior, LMG Gonçalves, GA de Paula Caurin, GTB Tamanaka, AC Hernandes, RV
Aroca. BEEPS: Block Based Integrated Platform for Embedded Systems. IEEE Access, v.
8, p. 197955-197968, 2020.
Available from: <https://ieeexplore.ieee.org/document/9246562>.

[2] CA Silva. Desenvolvimento e validação de módulo de comunicação MQTT para
plataforma BIPES para aplicações de Internet das Coisas. 2020. Trabalho de Conclusão
de Curso (Graduação em Engenharia de Computação) - Universidade Federal de São
Carlos, 2020.
Available at: <https://repositorio.ufscar.br/handle/ufscar/13656>.

[3] RD Caballar. Programming without code: The rise of no-code software development.
IEEE Spectrum. Tech Talks, Nov. 2020, Disponível:
<https://spectrum.ieee.org/programming-without-code-no-code-software-development>

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 7/96

https://ieeexplore.ieee.org/document/9246562
https://repositorio.ufscar.br/handle/ufscar/13656
https://spectrum.ieee.org/programming-without-code-no-code-software-development

Bill of Materials

Item Description

1 Any board with ESP8266 or ESP32 module.
Specifically, all examples in this book used the Wemos
D1 Mini module, based on the ESP8266 SoC

2 DHT11 Humidity and Temperature Sensor

3 Light Dependent Resistor sensor (LDR)

4 Prototyping board - protoboard

5 AC electric plug

6 Board with relay

7 AC electric plug receptacle

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 8/96

8 AC plug adapter for light bulb/lamp

9 Terminals

10 Jumper cables

11 Power bank

12 127 Volts AC Light build

13 Potentiometer

14 Parallel cable (white) for connection to the electrical
network

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 9/96

15 Switch (button) / Push Button

16 Micro servo motor / RC Hobby Servo

17 Different resistors with values ​​of 1K, 570 ohms, and 220
ohms

18 Buzzer (piezoelectric sound emitter)

19 Light-emitting diode (LED)

20 3-color RGB Light-emitting diode (LED)
Optional: only for the activity “Changing color weather
rooster”

21 LED Matrix Shield with TM1640 controller
Optional: only for the second part of the activity
“Changing color weather rooster”

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 10/96

Preparation of the ESP8266 or ESP32 board

Several boards can carry out the activities proposed in this text. However, we will
focus on using the board with the ESP8266 module on this occasion. Furthermore,
MicroPython (https://micropython.org/) must be installed on this board, allowing you to
program, debug and manage applications practically and dynamically, with a minimalist
implementation of the Python programming language. Using the resources of the BIPES
project, installing MicroPython on the ESP8266 is quite simple. The following steps work on
Google Chrome and Microsoft Edge browsers in MAC, Linux, and Windows environments.

To install MicroPython on ESP8266:

1. Go to: https://bipes.net.br/flash/esp-web-tools/.

2. Connect the ESP8266 board to the computer’s USB port.

3. Click CONNECT.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 11/96

https://micropython.org/
https://bipes.net.br/flash/esp-web-tools/

4. Select the serial (COM) port used by your device and click Connect:

5. Then click INSTALL MICROPYTHON:

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 12/96

6. Then click INSTALL:

7. After installation, you will see the message:

8. Click NEXT and then LOGS & CONSOLE.

Observe the behavior of the board on the console. By default, MicroPython creates a
“MicroPython” network for remote connection and programming via WiFi. However, some
generic ESP8266 boards have power circuits that provide insufficient electrical current to
supply the board’s energy demand when the ESP8266 board starts the WiFi Access Point

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 13/96

network service. As a result, the board may begin to restart without stopping (as shown in
the image below).

Depending on your ESP8266 board, this issue will not occur. Anyway, if it happens,
the solution is to disable the "Access Point" mode. To do this, copy the line below, and paste
it into the terminal/console immediately after the ESP8266 board reboots. You will need to
watch the reboot timing and enter the command immediately after the reboot. Otherwise, the
board will keep rebooting continuously.

Command to be copied and pasted immediately after the board reboots:

import network; network.WLAN(network.AP_IF).active(False)

With MicroPython installed and stable, you can proceed to the next steps.

Note: All activities and commands mentioned in this text will work on ESP8266 and
ESP32.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 14/96

Blinking the on-board LED
The light-emitting diode, or LED, is an indicator light used in many situations to

indicate the status of an embedded system. For example, on a modem, it can show whether
the Internet is connected. Thus, “Blink the LED” is one of the first activities performed to
test/learn about a new board/device used to build an embedded system. This section will do
a step-by-step activity to flash the onboard LED of the ESP8266 board. In other words, it is
not necessary to connect any external LEDs. Just use the one already existent on the board.

1. Connect the ESP8266 module to the computer’s USB port.

2. Access the BIPES development environment: https://bipes.net.br/ide/.

3. Choose, in the upper right corner, the ESP8266 option:

4. Access the Console tab:

5. Click on the connect icon:

6. Click on Serial:

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 15/96

https://bipes.net.br/ide/

7. Choose the port associated with the board and click on Connect:

8. Check if the connection was successful by sending commands to the board. For
example, try typing help() or print(“Hello BIPES”). If the board is not
responding, you can also try resetting the board by pressing the reset button or
removing it from the USB port and reconnecting it (return to step 5).

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 16/96

After connecting, check that each board has a pin map. In particular, the board's
internal LED indicator light, which we want to use, is connected to pin D4 / GPIO2 of most
ESP8266 boards, but check your board pin map to be sure. The figure below shows an
example of a WeMos D1 mini board pin map with ESP8266 module:

In the image above, note that each terminal to connect external components has a
label, such as D8, D7, A0, D2, etc. The 5V pin provides 5 Volts for external circuits, and the
3V3 provides 3.3 Volts. Pin G is the Ground (Ground) of the circuit. Note that there are
dozens of models/options of boards with ESP8266 module, so you will need to identify the
pins / LEDs, connections of your board. The figure below shows another board option with
the ESP8266 module, commonly called NodeMCU or “DevKit” by Chinese suppliers. This
board, specifically, has two LEDs: one at GPIO2 and one at GPIO16.

9. Prepare the following program using BIPES, as illustrated below.

Tip: drag and drop the blocks available in Loops; Timing and Machine → In/Out Pins;
Always remember to include a delay so that you can see the LED state-changing between
each action. Without delay, the LED will flash so fast that it is impossible to see it blinking
with our eyes.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 17/96

Note: Due to the internal circuit characteristics of the WeMos D1 mini board, the internal
LED of this board turns on with a low logic level (0 / false) and goes off with a high logic
level (1 / true). This characteristic may vary from board to board.

10. After preparing the program, click on the icon to run it (Play icon):

You can check the program being transferred to the board via the console if you
want. The program will make the LED blink ten times and then terminate.

Activity:
Change the program so that the LED flashes with different time intervals and a different
number of times.

Tip: Use the user icon in the upper right corner of the screen to choose the
language of the BIPES interface (English or other).

We have used the “repeat 10 times” block, available in the left toolbox section:
Loops. However, the same toolbox section also offers other repetition structure options,
such as “count from 1 to 10” and “repeat while true” (repeat infinitely). Indeed, you can
click on the numbers and change the values as you want.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 18/96

In the case of counting from 1 to 10, each loop iteration updates the “i” variable (a
storage space for program data), which can be used within the repetition structure. In the
example below, the program prints to the Console from 1 to 10 with an initial text “i = “ to
show the variable name. Examples of counting and infinite repetition are shown below:

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 19/96

The infinite repetition structure “repeat while true” is one of the most used repetition
structures in embedded systems since many embedded systems perform a sequence of
operations continuously and repetitively while the system is turned on. For example: reading
data from a sensor, checking the temperature of an environment, and turning on or off the
refrigerator’s compressor, among others. However, it is important to include a method to exit
the loop when a condition is met. This can be done with the block “Loops >> break out of
loop", allowing to "exit" the loop or enter another routine without the need of pressing the
reset button directly or by executing CTRL+C via the console. Either way, the CTRL+C
command on the console or the “Stop Running Program'' button will break an infinite loop.

The result can be seen in the Console (click Stop to quit the infinite loop).

Another helpful feature associated with the Console is requesting user data via the
Console (prompt the user). The block “prompt for number” can be used for this purpose
and found in the Toolbar’s text area. Thus, the program below presents an interactive
version that flashes the LED. In this version, the program asks how many times the user
wants to flash the LED and the time interval with which the LED alternates its state.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 20/96

The figure below shows an example of using such a program, where the user typed
10 for the number of times and 0.1 for the time interval. After the program executes the
sequence of flashing the LED 10 times, the program asks the user for the options again. For
the second time, the user typed 5 and 0.5.

For the curious:

Check that this block-based program generated source code in Python language
(available in the Files tab of BIPES). In that tab, you can see the automatically generated
program in the tab Files >> Blocks to code area:

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 21/96

Advanced:

If you want, you can edit the file in Python, save it (button “Save a copy”), and run
the program edited in text form. As mentioned, the ESP8266 board uses MicroPython, a
Python version optimized for embedded systems and microcontrollers. Also, you can save
this file as “main.py” by the BIPES Files tab (Save a copy button).

The program “main.py” will run automatically every time the board is turned on,
autonomously and independently. In other words, your solution will be saved and embedded
in the board and will not depend on BIPES or on the computer to work! If you want to test it,
you can connect the board to a power bank or a power adapter plugged on the mains and
verify that the program/system works autonomously.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 22/96

Digital input and checking a condition

Microcontrollers, in general, have two main types of inputs: digital and analog. Inputs
are usually associated with General Purpose Input Output (GPIO) pins denoted on the board
as GPIOX, where X is the pin number with codes such as D0 or D1. Therefore, when
choosing the board model in BIPES, the pins of this board will be automatically listed for
choice, facilitating programming, as shown in the figure below:

Note that this list of pins will be associated with the physical pins of the board:

In the case of digital mode, these pins can be used to control output devices, and can
assume two states: [on / true / 1] or [off / false / 0]. Thus, different devices can be connected
and controlled by these pins. The same pins can also be used in input mode, in order to
“read” digital input signals: [on / true / 1] or [off / false / 0].

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 23/96

Since the ESP8266 module works with 3.3 Volts, a potential difference of 3.3V
between the referred pin and the reference (G) represents logic 1, while a zero potential
difference (0V) represents logic 0.

The example below shows a program that monitors the digital input and checks for a
condition (IF) so that a variable (program data storage space) has its value incremented by
one unit every second IF the physical status of this pin is 1 (active). The program starts by
setting the value of variable C, a temporary counter, to 0 [set C to 0]. The program then
proceeds to an infinite loop [repeat while true]. Within this repetition structure, variable X
receives the reading from digital pin D0 [set X to read digital pin D0], so that variable X will
receive the value 0 if pin D0 has 0 Volts or 1 if pin D0 has 3.3 Volts. Next, the program prints
the value of variable X and variable C on the Console, in the format “D0 = n | C = n”, via the
command print. Then, the instruction IF checks if the variable X, which has the digital pin
reading, is equal to 1, and if so, it increments the value of C by 1. Finally, the program waits
1 second and restarts the sequence.

Check that the block “create text with” has a small blue gear. It is possible to
configure this block’s number of inputs by clicking on this icon. Over the
following few practices, use this blue button to configure block options
whenever necessary.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 24/96

The following figure shows a simple way to test the program we just created. First,
start the program execution and use a jumper cable to switch the input value of the pin
configured in the program (D0), by connecting it to pin 3V3 (logic level 1) and later to pin G
(ground, logic level 0). Notice the changes on the Console tab and the counter increasing
every second when the received logic level is 1.

Example of result that can be seen in Console:

Based on this example, several applications can be created, such as counting the
number of vehicles or people that have passed through a portal, checking whether a door is
opened or closed, checking the presence of people by presence/alarm sensor, checking the
level of a water tank (complete or not) with a buoy-type digital sensor, among other
possibilities.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 25/96

Analog input and LDR light sensor
Another possibility of reading external inputs is through analog input pins. While

digital pins only detect signals 0 or 1, analog pins are sensitive to variable measurement
values ​​within a predefined range. For example, they can measure voltage, temperature, or
other values ​​that vary between various possibilities. The ESP8266 has only one analog input
port (pin A0), which can measure input values ​​between 0 and 3.3 Volts, internally mapped
between 0 and 1023, with 0 being equivalent to 0 Volts and 1023 equivalent 3.3 Volts . The1

ESP32, in turn, has several analog input pins, which can be used simultaneously. To use the
analog input from the ESP8266 module, you can use the following program with the block
“Read ADC Input” or “read analog input”, which reads the analog pin and is available in
the section Machine → In/Out Pins of BIPES toolbox.

You can see values ​​ranging from 0 to 1023 on the Console tab while running the
above program. During the test, use a jumper cable to connect pin A0 to G and observe the
reading of 0. Then, connect pin A0 to pin 3V3 and note a value close to 1023 is printed on
the Console. Attention: ESP8266 module input pins support a maximum of 3.3 Volts. Do not
apply higher electrical voltage values at the risk of damaging or burning the module.

Activity:
Considering that the reading 1023 corresponds to 3.3 Volts, modify the above program so
that it shows, on the Console tab, the value in Volts applied to pin A0 of the module.

We will now use an LDR (Light Dependent Resistor) sensor, which varies its
electrical resistance according to the ambient light and can be monitored through an analog
input of the ESP8266 module. First, as shown in the following figure, assemble the circuit
using a prototyping board (protoboard or breadboard). The figure below illustrates how the
breadboard interconnects parts: columns at its center and rows at its borders. Thus, all
components connected in the same column will automatically have their terminals electrically
interconnected.

1 The block read analog input converts the value of the analog voltage signal at the input to a 10-bit
digital value.
__

Internet of Things using BIPES | 1st Edition | December/2021 | Page 26/96

Circuit assembly with the ESP8266 module, LDR light sensor, and a 220-ohm
resistor (red, red, brown):

The setup above is based on an electronic configuration called voltage divider so that
the proper selection of 2 resistors connected in series can set the output voltage value at the
common terminal between the two resistors. In the case of this circuit, the LDR sensor is a
variable resistor, and as the lighting changes, the resistance of the LDR also changes,
changing the output voltage, which is measured by pin A0 (green wire). The red cable (V) is

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 27/96

connected to the 3V3 of the ESP8266 board supplying current to the circuit. The output
cable (green) is connected to the board's analog input (AIN / ADC0), and the black wire is
connected to the board's ground (G or GND), closing the circuit. Now we can use the already
created program to analyze the lighting variation detected by the LDR.

The above program will “read” the analog input and show it in the BIPES Console
tab. Try to cover the LDR sensor with your hand and see the values changing on the
console. Try also to point a flashlight to the LDR and check the readings.

Next, we can go further with this setup and visualize the readings graphically. To do
this, add the block “show on IoT tab”:

Now use the BIPES IOT tab:

In DATASOURCES, click ADD and choose “BIPES Serial, USB or Bluetooth” and
type LDR as the name, 1 as the message ID, and 0.5 as the refresh rate:

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 28/96

Save and add one or more “pane” (dashboard panels), with the button ADD PANE:

Drag and drop the “panes” to adjust their positions at your preference. Then, in each
“pane”, add visualization components (by clicking the icon +), as you prefer, and enter
“datasources[“LDR”]” in the field VALUE of each widget you added.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 29/96

In the example below, we selected a widget of type Gauge and one of the type Time
series (Highcharts):

Run the program and check the visualization. By varying the lighting that the LDR
sensor is exposed to, the readings will change and be displayed in real-time on the widgets
you have added to the dashboard.

Activity:
Swap the LDR for a potentiometer and check the values changing as you rotate the
potentiometer shaft. Discuss / research what is / how the potentiometer works.

Circuit assembly suggestion:

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 30/96

Date and time (RTC)
The MicroPython installed on the ESP8266 or ESP32 board makes it possible to

access a Real-Time Clock (RTC) feature. RTC allows the system to set a date and a time
and keep an up-to-date record of the time, independently of the programs executed on the
board. The system's internal RTC can be adjusted in several ways: manually, from an
external RTC with battery, which provides the correct date and time, even if the system is
turned off, or via the Internet, using the block Network Time Protocol (NTP).

The following example shows a program that starts the clock with the date/time
12/21/2021 at 14:37:55. Next, the program treats the date and time as a list structure,
separated by commas: (2021, 12, 21, 1, 14, 37, 55, 0) . It is then possible to use the block2

“in list” to take the sixth element (starting from 0), which corresponds to seconds, and store
its value in the variable S. Then, it is verified IF the variable S is equal to 0, and when it
does, the LED is turned on for one second.

2 (year, month, day, day of week, hour, minute, second, millisecond)

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 31/96

The result can be seen in the Console:

===
(2021, 12, 21, 1, 14, 37, 55, 222)
Seconds: 55
(2021, 12, 21, 1, 14, 37 , 56, 226)
Seconds: 56
(2021, 12, 21, 1, 14, 37, 57, 231)
Seconds: 57
(2021, 12, 21, 1, 14, 37, 58, 236)
Seconds: 58
(2021 , 12, 21, 1, 14, 37, 59, 241)
Seconds: 59
(2021, 12, 21, 1, 14, 38, 0, 245)
Seconds: 0
BEEP: New minute!
(2021, 12, 21, 1, 14, 38, 3, 233)
Seconds: 3
(2021, 12, 21, 1, 14, 38, 4, 232)
Seconds: 4
(2021, 12, 21, 1, 14 , 38, 5, 227)
Seconds: 5

A buzzer can be connected between pin 3V3 and the digital pin D4, allowing the
system to emit a 1-second beep every minute. For example, the figure below shows the
possibility of connecting a buzzer using pins 3V3 connected to the + of the buzzer and the
D4 to the other buzzer terminal. The Buzzer circuit is shown in the following figure.

Note that the date and time are not lost even with the delay of 3 seconds (2 seconds
inside the IF and one on the repeat loop). The reason is that the RTC maintains an
up-to-date record of the date and time, regardless of the program's operation. The current
date and time will be obtained whenever the block “get date and time” is used. Later, you
can use an external RTC, which, backed up by a battery, will keep the date and time always
up to date, or get the date and time from the Internet via the NTP block.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 32/96

Files on the board
If you have already used Arduino, you must remember that in Arduino, there is no

concept of files stored on the board. In the case of BIPES with MicroPython, each board can
store several files, which can be programs, data, configurations, or any other information you
want to record in files. Therefore, file management in BIPES is quite simple and can be done
through the FILES tab. This entire file management environment can be used via USB cable
or WiFi if the board is connected to a WiFi network. The following figure shows an example
of the files tab BIPES:

The table below explains each button available on the FILES tab:

Upload script to the device
Sends a file from your computer to the board

Save a copy
Saves a copy of the opened file with a custom name on the board

Refresh device file list
Updates the file list

Run file
Runs a Python program stored in that file. It is also possible to use
keyboard hotkeys: Ctrl+Shift+R to start a program and e Ctrl+Shift+S
to stop a program. Hotkeys can be used from any BIPES tab.

Download file
Download the file on the board to your computer

Delete file
Deletes the file from the board

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 33/96

Filename
Name of the last file opened on BIPES text editor or to be saved by the
command Save a copy. You can click on this area and edit the file
name. Thus it is possible to save copies or save modifications.

In the area Blocks to Code, you can see the program automatically generated from
the BIPES blocks, which can be edited and have copies saved. In addition to storing
programs and settings, it is also possible to use files to store collected data without the need
for an Internet connection. For example, the program below reads the analog input and
writes it in the log.csv file associated with the reading date and time, with data collection
every 60 seconds. Such a program could be used for some environmental data collection
systems.

The collected data is stored in the board's FLASH memory and kept even if there is a
power failure. By the way, MicroPython is also stored on the FLASH memory, so it manages
this memory to accommodate the system and user files and programs.

When the board is connected to a computer, it is possible to download the log.csv
file, which will have the following format:

(2021, 12, 15, 2, 22, 42, 50, 3):8
(2021, 12, 15, 2, 22, 43, 0, 60):8
(2021, 12, 15, 2, 22, 43, 10, 119):8
(2021, 12, 15, 2, 22, 43, 20, 173) :8
(2021, 12, 15, 2, 22, 43, 30, 228):8

As you can see, the date and time are written on each line of the file, and then the
analog input reading is also written after the colon “:”, as instructed in the program by the
block set L to create text with M : read analog input 0. If necessary, the MicroPython also
allows these operations to be carried out on an SD Card memory card, allowing greater
storage space for data collection. SD Cards can be easily added to projects using boards
with built-in slots for SD Cards or SD Cards shields.

Finally, after reading the last section of this book (sending data to the Internet), you
could create programs that collect data to files and send these data to the Internet when
there is a connection available, avoiding any data loss, as the data file can be stored on the
FLASH memory or SD Card.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 34/96

Checking a Condition (Part 2)

We have already used the conditional structure IF to take actions based on a digital
input. Now, we discuss another function of an embedded system, which is to make a
decision based on the reading of an analog sensor—for example, activating a device when a
sensor detects some predetermined level. In the case of the circuit with the LDR, an
example would be to activate the LED for 10 seconds when the sensor detects that it has
gone dark. For this example, we define “dark” when the LDR provides a measurement value
less than 10 (within the range of 0 to 1023). For example:

Test the program and try to adjust different levels for darkness detection.

Activity:
Make the LED blink while the lighting is below the specified level, and stop blinking when it
is above this level.

Also, save the program as main.py using the FILES tab and test the system
disconnected from the computer, for example, connected to a Power Bank or USB power
adapter connected to the mains. Note that the program runs standalone on the ESP8266
and not on your computer!

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 35/96

Networking: List Wi-Fi networks
In the following activities, we will connect our board to the Internet! But before that, it

is possible to list available networks. Try it yourself. The network options are at the end of
the toolbox, under the “Network and Internet” option. For example, the following program
lists the available wifi networks:

Networking: Connecting to the Internet

Use the block above to inform the network name and password and connect to the
Internet. Next, try running the program so that the board connects to the Internet. This block
will automatically obtain an IP address from the network using Dynamic Host Configuration
Protocol (DHCP). Eventually, you might need to know the IP obtained: such information can
be obtained using the block Wifi current IP. After listing the networks and connecting to the
Internet, we can now send data to the cloud!

Networking: Sending data to the Internet/Cloud
The figure below illustrates a typical scenario of an application that sends data to a

remote computer, having adequate software for receiving, storing, and making available
these received data. This computer is called a server and is represented in the lower left
part of the figure and, thanks to the Internet, it can be anywhere in the world. Such a server
can be a physical or virtual machine, and it can also be active in “cloud” services such as
Google Cloud Computing (GCC) or Amazon Web Services (AWS). The BIPES project
server, for example, is hosted on Google's cloud platform. The figure also shows that various
devices such as computers, tablets, and smartphones can access data stored on this server
thanks to Internet connectivity. The figure also illustrates the embedded system, based on
the ESP8266 card, which connects to the Internet through a wireless access point (Access
Point).

In that way, an ESP8266 module can collect some sensor information, send the data
to a server, and this server can store the received data and share it with other devices via a
web page, for example.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 36/96

With the board connected to the Internet, use the blocks on the toolbox under
Network and Internet >> EasyMQTT to create a program that sends data to the cloud.
Define the "Topic" (Topic) and the data source or value (Data). The session ID (Session ID)
is created automatically. However, you can manually define the Session ID if needed. For
example, the following program sends analog readings from the LDR to the cloud using
MQTT:

Message Queuing Telemetry Transport (MQTT) is a standard messaging protocol for
the Internet of Things (IoT). In that way, BIPES offers the EasyMQTT feature, which provides
__

Internet of Things using BIPES | 1st Edition | December/2021 | Page 37/96

an easy-to-use abstraction for MQTT services, allowing quick and flexible IoT prototyping. In
addition, BIPES also enables you to create programs that communicate with any other
MQTT device or service, such as ThingSpeak, ThingsBoard, or even SAP's IoT platform!

When running the program, you can see the result in the Console tab:

Remember that BIPES has a handy feature: work/see two tabs simultaneously by
right-clicking with the mouse on one tab and left-clicking with the mouse on the other desired
tab. Like this:

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 38/96

Thus, you can click the left mouse button on the console and the right mouse button
on EasyMQTT to see the results sent to the cloud while you monitor the program execution.

Sharing: It is possible to click on the “button share” () and send an Internet link
will be generated to share your program publicly. You can send this link to anyone, and when
they access this link, they will be able to see real-time data sent by your board by clicking on
the EasyMQTT tab. Finally, it’s also possible to create a custom (dashboard) to visualize this
data, using the IoT tab again (we've already done this for the USB cable, but now we'll do it
using the Internet). This time, let's use the datasource EasyMQTT:

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 39/96

On the datasource, inform the EasyMQTT session and topic defined on your program
and click SAVE. Next, let's add the panes and graphical widgets. First, add panes and then
add widgets to your panes. For each widget, enter the datasource value. You can click on
the “+ DATASOURCE” button by the side of the value field for autocomplete to help you:

In the example, the datasource used is: datasources["LDR"]["result"][0]["data"]

You can add other components and customize your dashboard. For example:

Again, note that you can share this program with another person via the link, using

the button . That person will have access to the dashboard and data sent by your device
from anywhere in the world. The share option will share the program and access to the IoT
and EasyMQTT tabs.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 40/96

Handling errors
Several unexpected situations can occur in an embedded system, and in many

cases, there will not be a user to reset the system. In addition, some embedded systems
may be in inaccessible locations.

Thus, it is important to have ways to detect and handle errors. The block try-except,
available in the Python toolbox, allows the system to try to execute an operation, and if the
process fails, execute an alternative code. Such verification is helpful for several systems.
For network-connected applications, it is also helpful because, for various reasons, the
connection may be lost unexpectedly. Further, in some cases, network connection failure
can interrupt the execution of the whole program until a user/operator restarts.

The following program illustrates an example of date and time synchronization from
the Internet using the NTP block (available on the Network and Internet toolbox). Even if
there is a communication failure with the NTP server, the program continues.

Without the structure try, if the program fails to connect to the NTP server, the
program will never execute the blocks inside the structure repeat. Using the try, even if an
error occurs, the program flow continues, and the repeat is executed.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 41/96

BIPES: Multiple projects
With the ease offered by BIPES, you will not resist trying several programs and

experiments. To facilitate this process, note that whenever you create a new program in
BIPES, the following block is automatically made available on the desktop:

This block makes it possible to define the program’s name and author. Also note, in

the upper right corner of the BIPES screen, that a profile icon can be used: . This icon
will access the following BIPES area on the right area of the screen:

In this area, it is possible to create new programs, browse among already made
programs, switch between programs, delete or download the XML file corresponding to that
program to the local computer. The same area also allows you to change the language of
the BIPES interface. Note that these programs are stored locally in your web browser
storage area.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 42/96

Parallel activities: timers
Another feature often used in embedded systems is timers. Timers are

hardware-supported timing mechanisms that automatically generate events in scheduled
time instants. Hardware timers generate interrupts in running programs, deviating the
program's execution flow to a routine associated with a timer. When the timer routine is
completed, the system returns the execution flow to the exact point where it diverted from
the main program. As these switches occur quickly, the perceived effect is that the module is
performing multiple tasks simultaneously.

The program below shows an example where Timer 0 is configured to print the
analog input reading on the Console every 1000 ms. Each line printed shows the count of
time, in milliseconds, since the ESP8266 was turned on with the block [get milliseconds
counter], followed by the analog reading. Timer 1 is set to turn off the Timer 0 after 30
seconds. The program also includes a repeat loop that flashes the LED on pin D4 while
digital pin D0 has a high logic signal (1), showing the instant of time of occurrence of this
event.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 43/96

The listing below shows the Console output after this program has run for a few
seconds. The texts between the symbols “<< >>” indicate our notes, which were not printed
on the Console by the running program.

===
<< PROGRAM STARTED WITH PIN D0 IN LOW (0) LOGIC LEVEL (D0 ⇔ GND)>>
3816: Analog value = 1
4816: Analog value = 1
5816: Analog value = 1
6816: Analog value = 1
7816: Analog value = 1
8816: Analog value = 1
9816: Analog value = 1
10816: Analog value = 1
11816: Analog value = 1
12816: Analog value = 7
13816: Analog value = 7
14816: Analog value = 8
<< PIN D0 RECEIVES HIGH LOGIC LEVEL (1) (D0 ⇔ 3V3)>>
15445: LED blinking
15816: Analog value = 7
16816: Analog value = 7
17453: LED blinking
17816: Analog value = 8
18816: Analog value = 8
19461: LED blinking
19816: Analog value = 8
20816: Analog value = 8
<< SOME SECONDS OF DATA SHOWN ON THE CONSOLE WERE OMITTED >>
31510: LED blinking
31816: Analog value = 1
32816: Analog value = 8
Turning off timer 0
<< AFTER 30 SECONDS, TIMER 0 IS TURNED OFF AND THE LOOP CONTINUES >>
33518: LED blinking
35526: LED blinking
37534: LED blinking
39543: LED blinking
41551: LED blinking
43559: LED blinking

The numbers presented before the “:” show the time, in milliseconds, of each event.
Note that the events of the main loop and the two timers (timers) occur independently.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 44/96

Temperature and humidity sensor

We can also include a temperature and humidity sensor in the system and send
measurements to the cloud! Use jumper cables directly, or use the protoboard to connect the
DHT11 humidity and temperature sensor to the ESP8266 module. Note that the sensor must
be connected to pin 3V3 to receive power, to the ground (GND), and the output (second pin)
to input pin D1 or D4 (or whatever you find suitable) on the board.

Connection suggestion:

Pin of DHT11 Pin of ESP8266

GND (Pin 4) G

VCC (Pin 1) 3V3

DATA (Pin 2) 2 (D4)

Circuit assembly suggestion for the board WeMos D1 mini board with the module
ESP8266 connected to DHT11:

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 45/96

Program:

Run the program, and view the result in the Console tab. Example result:

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 46/96

Activity:
Use EasyMQTT to include one additional feature to send the humidity and temperature to
the cloud, along with the readings from the LDR. In the IoT tab, configure an IoT
(dashboard) and monitor readings sent by the board using another device/computer.

Example result from the activity:

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 47/96

Share the dashboard with smartphones and other devices
After the application is ready, it is possible to share the link only for the visualization

panel (freeboard dashboard) with any device, including optimization for mobile phones
(responsive web technology).

Click on the share button of BIPES, and a link will be generated, similar to:
http://bipes.net.br/beta2/ui/#4c6bfm. Replace the term beta2/ui/ with freeboard so that the
new link will be: http://bipes.net.br/freeboard#4c6bfm. This last link will only share the
dashboard (freeboard). Another possibility is to use the option SHARE BOARD, next to the
freeboard icon:

When you click on the “+ SHARE BOARD” button, a link is generated with its
associated QR-Code, and both will be displayed in a new window, as shown below. Note
that you may have to authorize pop-up windows on your web browser.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 48/96

http://bipes.net.br/beta2/ui/#4c6bfm
http://bipes.net.br/freeboard#4c6bfm

Now you can share this link or QR-Code with any user who
will view the data and even send commands to your
system (if you include an interactive application with
buttons (switches)). In addition, when accessing the
QR-Code, or link, by cell phone, the user also has access
to a responsive dashboard, similar to the one on the right,
thanks to freeboard!

To learn more about freeboard, check the freeboard
GitHub repository:
https://github.com/Freeboard/freeboard

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 49/96

https://github.com/Freeboard/freeboard

PWM: LED Brightness Control
We've already discussed how to control a digital output and check the status of digital

input and analog input pins. Another possibility is to use the digital output of the PWM type
(Pulse Width Modulation), which allows a digital signal in the form of a square wave to
approximate a voltage value equivalent to an analog output. Thus, it is possible to use a pin
with PWM output to control the brightness of an LED, the speed of a motor, the temperature
of a heating resistor, among other possibilities. Unfortunately, not all pins support PWM
output, so the LED already included on the ESP8266 board is not connected to a PWM pin.
Therefore, we will need an external LED connected to a pin with a PWM output feature to be
able to test this feature. In the example below, we use pin D3 (GPIO0).

Circuit assembly:
(Caution: Note that the LED has a polarity, ie, positive (more extended terminal) and

negative (shorter terminal, next to the bevel in the LED) pins. Therefore, the LED's negative
terminal must be connected to G (ground) and the positive terminal to the resistor, which is
connected to pin D3).

The PWM has two main parameters: the frequency of the generated square wave
signal (Frequency) and the duty cycle (Duty). Right now, we are interested in the duty
cycle. This parameter indicates the portion of the square wave at a high level (on), which
can vary from 0 to 100%. Thus, a 100% duty cycle means full power, 50% equals half power,
and 0% no power. On ESP8266 the PWM has 10 bit resolution (going from 0 for 0% to 1023
for 100%).

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 50/96

The program below makes the LED gradually increase its brightness from 0 to
maximum and decrease its brightness progressively to 0, repeating this process ten times.
Note how, in this application, the value of the parameter duty varies with the count of the
variable i.

The program above makes the LED increase its brightness smoothly and slowly from
0 to the maximum brightness, and then it reduces its brightness smoothly until 0, repeating
this process ten times.

Activity:
Use EasyMQTT and the IoT tab and implement a slider (slider) on the IoT tab that allows
you to control the LED brightness from a mobile phone or another device. Then control the
LED brightness from your mobile phone!

Tip: Use the block subscribe to a topic from EasyMQTT blocks. More details about this
practice are given in the following section: “Controlling devices via the Internet”.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 51/96

BIPES: Subroutines / functions
As your program gains new features, some code snippets may be helpful for reuse,

making it worthwhile to create reusable blocks: these are the functions/subroutines that can
be developed with the “functions” of the lateral toolbox. If we go back to the previous PWM
and LED example, notice that three functions are repeated two times. These three functions
could be grouped into a function and reused several times, as in the example below:

In the above example, we have created the LED function in the upper block area,
which takes a duty parameter used internally in those blocks. Then, in the lower blocks,
which constitute the main program, we call the LED function with the desired parameter
(value of variable i). On each call, all blocks within the function are executed.

You can create various functions, of several complexities, with or without receiving
parameters and create functions that return values. For example, a temperature unit
conversion function could be prepared and used as follows:

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 52/96

And the result in the Console will be:

===
20 Celsius = 68.0 Fahrenheit
21 Celsius = 69.8 Fahrenheit
22 Celsius = 71.6 Fahrenheit
23 Celsius = 73.4 Fahrenheit
24 Celsius = 75.2 Fahrenheit
25 Celsius = 77.0 Fahrenheit
26 Fahrenheit = 78.8 Fahrenheit
27 Fahrenheit = 80.6 Fahrenheit
28 Fahrenheit = 82.4 Fahrenheit
29 Fahrenheit = 84.2 Fahrenheit
30 Fahrenheit = 86.0 Fahrenheit
31 Fahrenheit = 87.8 Fahrenheit
32 Fahrenheit = 89.6 Fahrenheit
33 Fahrenheit = 91.4 Fahrenheit
34 Fahrenheit = 93.2 Fahrenheit
35 Celsius = 95.0 Fahrenheit
36 Celsius = 96.8 Fahrenheit
37 Celsius = 98.6 Fahrenheit
38 Celsius = 100.4 Fahrenheit
39 Celsius = 102.2 Fahrenheit
40 Celsius = 104.0 Fahrenheit
>>>

After creating the functions, you can share your program with the button and use
the functions created in other programs!

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 53/96

Controlling devices via the Internet
In this exercise, we will use a relay and electrical plugs to turn on / off any device

connected to the socket (mains) via Web / Wifi. For testing purposes, we suggest controlling
a light bulb. In that way, the device can be a lamp, a fan, a water pump, a heater, or any
other device with its power rating supported by the relay. Of course, you will need a Wifi
network/router for the connection. Suggestion: research on the functioning of the relay and
the history of the first computer “bug”.

Caution:
This activity includes connecting the system to the mains power with voltages of 127 Volts
or 220 Volts, presenting a risk of electric shock or other injuries. Only proceed if you feel
safe or consult a specialized technician before connecting the system to the mains.

The relay is an electromechanical device that allows controlling electrical devices
from digital signals. Thus, the ESP8266 board activates a relay module, triggering a load
connected to an electrical outlet. For this activity, it is necessary to connect the relay to the
ESP8266 board and the external electrical load to the relay.

One possibility is to use a relay module of the type “shield”, which fits directly onto
the ESP8266 board (WeMos D1 mini model), not requiring connection cables, as in the
example below, where the two boards showed can be stacked, fitting them through their
connection terminals.

There are three screw terminals on the relay board, where the load to be controlled
can be connected. We note here that the relay operates as an electronically controlled
switch, as it has three load control terminals: C (Common), Normally Open (NO), and
Normally Closed (NC). You must use 2 of these terminals together (C with NO) or (C with
NF). The choice of combination will define whether the relay turns the load on or off when
activated by the ESP8266.

It is also possible to use a single or double relay module (allowing control of two or
more devices) connected to the ESP board by jumper wires.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 54/96

Relay connections with the ESP8266 module:

Relay module Board with ESP8266 module

S or IN1 of the relay board Pin D4 of the ESP8266 (control signal)

+ of the relay board Pin VIN (5 Volts) of the ESP8266 (power)

- of the relay board Pin GND (earth) of the ESP8266

Attention: The entire assembly procedure must be carried out with the devices
disconnected from the mains.

The diagram below illustrates a two-wire plug and socket assembly, similar to a
power cord extension. One wire directly connects the plug and the socket, while the other
wire passes through the relay (normally open: pins C and NO; or normally closed: pins C
and NC).

Check the connections carefully, and if necessary, ask an electronics or electrical
technician for assistance. Then, after careful verification and validation of the assembly,
connect the load to the plug (we will use a lamp in this application) and, finally, connect the
power plug to the mains.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 55/96

Remember that the purpose of this practice is to activate the light bulb via the
Internet. Therefore, the program in blocks for this application is as follows:

To test the program, run it and go to the EasyMQTT tab. Type “relay”, fill in the data
with 0 or 1 and send the data. Then, check if the relay or LED changes its state between on /
off at your commands.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 56/96

Note that the remote control can be done from any device connected to the Internet
that knows the session through a web address. BIPES also offers an Application
Programming Interface (API) with web requests (HTTP) to integrate other applications. We
will detail this topic in the next section.

For now, it is worth mentioning that BIPES HTTP API for integration allows other
systems to change EasyMQTT topics values using HTTP requests. The update is done via
the page publish.php, where the desired session, topic, and value must be provided. For
example, for session 4tzuu7 and topic relay, the following requests can be used:

To turn on the device:
http://bipes.net.br/easymqtt/publish.php?session=4tzuu7&topic=relay&value=1

To turn off the device:
http://bipes.net.br/easymqtt/publish.php?session=4tzuu7&topic=relay&value=0

Note that each program will have a different session (4tzuu7in this case). Adjust the
session, or create your own! You can include these web addresses in button actions on the
IoT tab. Also, check if your BIPES access was via HTTP or HTTPS (check the browser
URL). Those on/off addresses mentioned above must start with http or https, depending on
how BIPES was accessed. For example, the configuration of a Switch widget on the
freeboard dashboard (IOT tab) would look like this:

Now, by clicking the buttons on the IoT tab, you will control the device connected to
the relay, such as a light bulb, for example:

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 57/96

http://bipes.net.br/easymqtt/publish.php?session=vn28pd&topic=relay&value=1
http://bipes.net.br/easymqtt/publish.php?session=vn28pd&topic=relay&value=1
http://bipes.net.br/easymqtt/publish.php?session=vn28pd&topic=relay&value=1

If you share this program with another person via the link, using the button , that
person will have access to the control panel from anywhere in the world and control the
device remotely.

You can also use MIT App Inventor (http://ai2.appinventor.mit.edu/) to create a
smartphone app that controls the device. The complete application can be made online
using the website http://ai2.appinventor.mit.edu/:

After creating an account and logging into MIT App Inventor, in the designer screen,
create a new program and include two buttons: ON and OFF, as shown in the figure. If you
want, you can add images, adjust sizes, colors, and texts to make your program user
interface more attractive.

In blocks (click on the top right button to access “blocks”), include two blocks that
define the actions of the buttons, each one configured to make HTTP requests to the links
as mentioned earlier:

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 58/96

http://ai2.appinventor.mit.edu/
http://ai2.appinventor.mit.edu/

Done! The blocks above build a complete app for Android phones, which allows you
to turn on/off devices remotely. Note how similar it is to BIPES and how easy to use! In fact,
both BIPES and MIT App Inventor are based on the Google Blockly Programming language.
That is why the blocks are so similar.

Activity:

Remember the example mentioned in the introduction of this book: the “on/off” control of a
refrigerator. You already have the knowledge and tools to implement this type of control!

Use the ESP8266 or ESP32 board and the assembly with the relay, made in the previous
exercise, together with a DHT11 temperature and humidity sensor. Then, prepare a
program that turns on a relay, responsible for activating a fan when the temperature
exceeds 30 degrees Celsius, and turns off the relay when the temperature is below 25
degrees Celsius.

After testing the system, include the functionality to monitor the temperature remotely. The
option to adjust, via the dashboard, the minimum and maximum temperature that keeps
the relay, which controls the fan, activated.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 59/96

Web client and web server (HTTP)
Nowadays, a widespread activity is accessing websites such as http://

/www.bipes.net.br/. For this type of access, a web browser such as Google Chrome, for
example, uses the hypertext transfer protocol - HyperText Transfer Protocol (HTTP). The
exchange of information over HTTP is initiated by a client device that starts the process
through a request sent to the server. The following figure illustrates a possible situation
where an ESP8266 board acts as a client, making a request to a server via the Internet.
Note that such a scenario could also be reversed, where ESP8266 could act as a server.

Other architectures (connection options) are also possible, including scenarios
without an Internet connection. For example, the following figure shows the possibility of two
ESP8266 boards exchanging data directly with each other. In this situation, one board must
be configured in access point mode, providing a WiFi network for connection, and another as
a WiFi station. In addition, one card acts as an HTTP server and another as an HTTP client.
This type of wireless network is called ad-hoc.

A similar architecture can be achieved using a wireless access point, which provides
a WiFi network to connect the two boards. From the point of view of exchanging HTTP
messages, the operation is the same as described above. This connection architecture is
called infrastructure mode, as the wireless access point is considered a piece of
infrastructure equipment.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 60/96

http://www.bipes.net.br/
http://www.bipes.net.br/

In some network setups, the two boards may not communicate directly. Thus, it is
also possible for two embedded systems to communicate through a server. Each of the
boards illustrated in the figure below makes requests to a server. In addition, boards can
publish or consume data from this server to leave messages that will be made available for
other applications on other boards or devices to consult.

To perform the HTTP request, the client needs to know the uniform resource locator -
Uniform Resource Locator (URL), which, in short, has the following structure:

http://address:port/path/resource?query_string

A real URL example has already been used in this book in the activity of activating a
device via the Internet:

http://bipes.net.br/easymqtt/publish.php?session=4tzuu7&topic=rele&value=1

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 61/96

http://bipes.net.br/easymqtt/publish.php?session=vn28pd&topic=relay&value=1

Detailing each part of the URL:

Part Description

http:// Protocol: HTTP or HTTPS (secure, with encrypted transmission)

In the example: http://

address Address of the server on the Internet. This could, for example, be
in the format of IP address or name, such as 34.95.149.23 or
bipes.net.br

In the example: bipes.net.br

:port The port is an optional parameter, which is typically omitted. When
omitted, the port is understood to be 80, the default port for web
services. Using other port values ​​is useful when more than one
web server is associated with the same IP / address or when some
firewall or security system blocks port 80.

In the example, the port is omitted.

/path/ The path to the resource on the server.

In the example: /easymqtt/

resource The name of the resource to be used/accessed on that server.

In the example: publish.php

?query_string The query_string allows you to send parameters to the resource.
Multiple parameters can be included in the query_string
separated by the symbol &.

In the example: ?session=4tzuu7&topic=rele&value=1

HTTP Client

Accessing web services via HTTP is not just about content. The HTTP protocol has
become a standard way to access thousands of services and send and receive data
between devices. Here, an interesting concept is M2M or Machine to Machine, which means
direct communication between machines. The URL to access a service in web services is
also called endpoint.

Knowing the URL of the web service that will be used, a web client can perform
HTTP requests to access content and perform actions associated with that web service. The

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 62/96

http://bipes.net.br/easymqtt/publish.php?session=vn28pd&topic=relay&value=1
http://bipes.net.br/easymqtt/publish.php?session=vn28pd&topic=relay&value=1
http://bipes.net.br/easymqtt/publish.php?session=vn28pd&topic=relay&value=1

most common HTTP clients are web browsers. Thus, it is possible to use Google Chrome or
Firefox to access and test web service URLs discussed here.

In this sense, free and paid web services can be used via HTTP, made available in a
format called Application Programming Interface (API). Thus, there are thousands of service
options accessible for HTTP clients, such as consulting the weather forecast, carrying out
financial operations, obtaining currency and stock quotes, making payments, sending
messages via SMS, posting messages via Twitter, sending messages via Telegram,
performing geolocation queries, controlling devices remotely, accessing sensor data, among
others. In addition, the website https://any-api.com/ lists over 1400 APIs for possible
integration into other applications.

HTTP Client: Sending SMS Messages

The following figure shows an example of a program that sends SMS messages to a
list of phones, warning of low humidity when a DHT11 sensor measures relative humidity of
less than 5%. The proposed system does not have any additional cell phone electronic
module or SIM Card connected to the ESP8266 board to send SMS messages. Instead, the
sending of the SMS message occurs through a web service provided by the following HTTP
resource (endpoint): http://smsmarketing.smslegal.com.br/index.php. When accessing this
resource, it is possible to send parameters (such as destination phone and message)
through the query_string of the URL. For example:

http://smsmarketing.smslegal.com.br/index.php?app=webservices&u=seuUsuario&p=suaSe
nha&ta=pv&to=5516997970000&msg=BIPES

The above URL sends a message with “BIPES” to the phone number
5516997970000. This web service is paid, so both this and other web services require
authentication. For this reason, u and p parameters can be used to inform username and
password.

The example just shown is focused on Brazilian mobile phones. A quick search on
https://any-api.com/ for “SMS” results on several SMS APIs. The first one found, for
example, is “zoomconnect”, which provides the API endpoint
https://www.zoomconnect.com/app/api/rest/v1/sms/send to send SMS to a large number
of countries at low cost.

Anyway, as said, the next page shows an example of using an HTTP request to send SMS
text messages to several phones:

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 63/96

https://any-api.com/
http://smsmarketing.smslegal.com.br/index.php?app=webservices&u=seuUsuario&p=suaSenha&ta=pv&to=5516997970000&msg=BIPES
http://smsmarketing.smslegal.com.br/index.php?app=webservices&u=seuUsuario&p=suaSenha&ta=pv&to=5516997970000&msg=BIPES
http://smsmarketing.smslegal.com.br/index.php?app=webservices&u=seuUsuario&p=suaSenha&ta=pv&to=5516997970000&msg=BIPES
https://any-api.com/
https://www.zoomconnect.com/app/api/rest/v1/sms/send

HTTP Client: Changing color weather rooster

Perhaps you may remember those “Changing Color Portuguese Weather Rooster”
gifts that change color according to weather conditions. We can build an IoT version of this
rooster using an ESP board and a three-color RGB LED (Red, Green, and Blue). Climate
information can be obtained from several sources. One example is the Brazilian National
Institute for Space Research of the Ministry of Science, Technology, and Innovation
(INPE/MCTI), which offers a web service for consulting climate information. Furthermore, it is
possible to connect the ESP board to a power bank, turning this IoT rooster into a functional
decoration item.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 64/96

Considered a reference in space research, INPE/MCTI is Brazil’s primary climate
information and weather forecast source. In addition, INPE/MCTI's Center for Weather
Forecasting and Climate Studies (CPTEC) offers a free web service for consulting climate
information and weather forecasts for several Brazilian cities. More information about the
service and its terms of use is available at: http://servicos.cptec.inpe.br/XML/ (information in
Portuguese language only, sorry).

Anyway, similar services are available in most countries. In the USA, for example, the
National Weather Service also provides a web service to query weather data. Information
about this web service, its endpoints, and how to use them can be obtained on this link:
https://www.weather.gov/documentation/services-web-api#.

A third and broader possibility is Open Weather Map (http://openweathermap.org/),
which offers several web services to obtain current weather and forecasts with free and paid
options.

Using INPE/MCTI data (http://servicos.cptec.inpe.br)

For the Brazilian (INPE/MCTI) web service, the first step to use this service is to
verify the code (ID) of the city for which you want to obtain information. For this purpose, the
web service http://servicos.cptec.inpe.br/XML/listaCidades offers a list of cities covered by
the service and their respective codes. This list is provided in XML (formateXtensible Markup
Language), an international standard for exchanging information between machines and
web services.

For this example, we will use the example of the city of São Carlos - SP, a Brazilian
pole of science and technology . The code for the city of São Carlos - SP is 4774. Thus, it is3

possible to use the previsao.xml resource:
http://servicos.cptec.inpe.br/XML/cidade/4774/previsao.xml. Access to this endpoint
generates the following XML result:

<cidade>
<nome>São Carlos</nome>
<uf>SP</uf>
<atualizacao>2022-12-22</atualizacao>
<previsao>
<dia>2022-12-22</dia>
<tempo>ci</tempo>
<maxima>29</maxima>
<minima>19</minima>
<iuv>13.0</iuv>

</previsao>
<previsao>
<dia>2022-12-23</dia>
<tempo>ci</tempo>
<maxima>27</maxima>

3 Learn more about São Carlos - SP at https://www.reportsancahub.com.br/
__

Internet of Things using BIPES | 1st Edition | December/2021 | Page 65/96

http://servicos.cptec.inpe.br/XML/
https://www.weather.gov/documentation/services-web-api#
http://openweathermap.org/
http://servicos.cptec.inpe.br/XML/
http://servicos.cptec.inpe.br/XML/listaCidades
http://servicos.cptec.inpe.br/XML/cidade/4774/previsao.xml
https://www.reportsancahub.com.br/

<minima>19</minima>
<iuv>13.0</iuv>

</previsao>
<previsao>
<dia>2022-12-24</dia>
<tempo>c</tempo>
<maxima>26</maxima>
<minima>18</minima>
<iuv>14.0</iuv>

</previsao>
<previsao>
<dia>2022-12-25</dia>
<tempo>ci</tempo>
<maxima>24</maxima>
<minima>18</minima>
<iuv>14.0</iuv>

</previsao>
</cidade>

Source: CPTEC/INPE (Access on Dec/2021)

The field tempo offers the information necessary to implement our application among
the available information. Tempo is the Portuguese word for time, but it also means
weather. Be happy! This book even teaches a bit of Portuguese.

In XML format, each piece of information is enclosed in special markers. For
example, weather information is always delimited between <tempo> and </tempo>. In the
example above, the most recent data reads: <tempo>ci</tempo>. The documentation for
this INPE/MCTI web service also describes the possibilities of weather information. The
table below shows some of these acronyms. See the link http://servicos.cptec.inpe.br/XML/
for a complete list of acronyms and descriptions.

Code Description

ci Isolated Showers

c Rain

pc Rain Showers

t Storm

cl Clear sky

Using Open Weather Map data (http://openweathermap.org/)

OpenWeatherMap has several APIs and endpoints with hundreds of possibilities.
We are interested in the API that returns the current weather based on a query providing the
city’s name we want information about. More information, usage, and documentation about

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 66/96

http://servicos.cptec.inpe.br/XML/
http://openweathermap.org/

this endpoint can be found here: https://openweathermap.org/current#name.
OpenWeatherMap allows up to 60 API calls per minute and 1,000,000 API calls per month
on the free version. To use OpenWeatherMap APIs, you need to create an account and
generate an API Key to authorize API requests: https://home.openweathermap.org/api_keys.

The endpoint of our interest is:

http://api.openweathermap.org/data/2.5/weather?q=Marrakesh&appid=KEY

Note that the above URL includes a parameter q=Marrakesh, where we specify that
we want information for the city of Marrakesh. Moreover, you must provide an API key after
appid=. Simply generate an API key and replace it with the word KEY. The API key will be
something similar to 1b1111124567fafabcdee3aaae02dce0.

Here are some examples of using such API:

API URL: http://api.openweathermap.org/data/2.5/weather?q=Miami&appid=KEY

Result for the city of Miami:

{"coord":{"lon":-80.1937,"lat":25.7743},"weather":[{"id":801,"main":"Clouds",
"description":"few clouds",
"icon":"02n"}],"base":"stations","main":{"temp":295.62,"feels_like":296.01,"temp_min":294.
15,"temp_max":297.16,"pressure":1015,"humidity":80},"visibility":10000,"wind":{"speed":0.
45,"deg":225,"gust":1.34},"clouds":{"all":20},"dt":1641429138,"sys":{"type":2,"id":2009435,"
country":"US","sunrise":1641384498,"sunset":1641422623},"timezone":-18000,"id":416413
8,"name":"Miami","cod":200}

API URL: http://api.openweathermap.org/data/2.5/weather?q=São Carlos&appid=KEY

Result for the city of São Carlos:

{"coord":{"lon":-47.8908,"lat":-22.0175},"weather":[{"id":500,"main":"Rain",
"description":"light rain",
"icon":"10n"}],"base":"stations","main":{"temp":295.61,"feels_like":296.34,"temp_min":295.
61,"temp_max":295.61,"pressure":1008,"humidity":93,"sea_level":1008,"grnd_level":915},"
visibility":10000,"wind":{"speed":1.48,"deg":348,"gust":1.53},"rain":{"1h":0.15},"clouds":{"all
":100},"dt":1641429064,"sys":{"type":1,"id":8462,"country":"BR","sunrise":1641371643,"sun
set":1641419968},"timezone":-10800,"id":3449319,"name":"São Carlos","cod":200}

Note on the two examples that the field “description” has the information we need:
“few clouds”, and “light rain”.

Based on the information provided by the mentioned APIs, it is possible to implement
the "Changing color weather rooster". The following figure illustrates a possible assembly

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 67/96

https://openweathermap.org/current#name
https://home.openweathermap.org/api_keys
https://api.openweathermap.org/data/2.5/weather?q=Marrakesh&appid=KEY
https://api.openweathermap.org/data/2.5/weather?q=Miami&appid=KEY
https://api.openweathermap.org/data/2.5/weather?q=S%C3%A3o%20Carlos&appid=KEY

with a three-color LED connected to the ESP module. This LED has a ground terminal
(GND) and three more terminals, one for each color. By controlling pins related to each LED
color, it is possible to light the LED in red, green, blue, or combinations of these colors.

For the INPE/MCTI service: The presented program has an infinite repeat loop with a
10-minute wait on the next page. Thus, the system consults the INPE/MCTI server every 10
minutes and updates the LED colors according to the weather conditions for the city of São
Carlos. Right after performing the HTTP GET request to the server, the program checks if
the server responded with code 200, which means that the request was received, processed
successfully, and the response is available. In this case, the answer is a text in XML format,
as illustrated above.

The program then performs a sequence of operations on variables L1, L2, L3, and
weather, to get just the abbreviation with information about the weather. Next, several IF
conditional tests are performed to check some conditions and turn on the related LEDs: red
(pin D1) for a storm, green (pin D2) for clear sky, blue (pin D3) for rain. A possibility was also
implemented for the acronym pc (partially rainy), which lights up the LEDs connected to pins
D1 and D3 simultaneously (red and blue), resulting in a color similar to purple.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 68/96

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 69/96

The listing below shows an example of the Console output when running the
program. Note that printing the values ​​of variables L1, L2, L3, and weather would not be
necessary for the production version. Instead, we added these prints to show each step of
obtaining the desired information through the list manipulation blocks. Some excerpts have
been highlighted in bold to facilitate understanding of the messages below.

Waiting for Wifi connection
Connected

Success. Response = b"<?xml version='1.0'
encoding='ISO-8859-1'?><cidade><nome>São
Carlos</nome><uf>SP</uf><atualizacao>2021-12-22</atualizacao><previsao><dia>202
1-12-22</dia><tempo>c</tempo><maxima>29</maxima><minima>19</minima><iuv>13
.0</iuv></previsao><previsao><dia>2021-12-23</dia><tempo>ci</tempo><maxima>27</
maxima><minima>19</minima><iuv>13.0</iuv></previsao><previsao><dia>2021-12-24</
dia><tempo>c</tempo><maxima>26</maxima><minima>18</minima><iuv>14.0</iuv></p
revisao><previsao><dia>2021-12-25</dia><tempo>ci</tempo><maxima>24</maxima><
minima>18</minima><iuv>14.0</iuv></previsao></cidade>"

L1=['b"<?xml version=\'1.0\' encoding=\'ISO-8859-1\'?><cidade><nome>São
Carlos</nome><uf>SP</uf><atualizacao>2021-12-22</atualizacao><previsao><dia>2021
-12-22</dia>',
'c</tempo><maxima>29</maxima><minima>19</minima><iuv>13.0</iuv></previsao><pr
evisao><dia>2021-12-23</dia>',
'ci</tempo><maxima>27</maxima><minima>19</minima><iuv>13.0</iuv></previsao><pr
evisao><dia>2021-12-24</dia>',
'c</tempo><maxima>26</maxima><minima>18</minima><iuv>14.0</iuv></previsao><pr
evisao><dia>2021-12-25</dia>',
'ci</tempo><maxima>24</maxima><minima>18</minima><iuv>14.0</iuv></previsao></ci
dade>"']

L2=c</tempo><maxima>29</maxima><minima>19</minima><iuv>13.0</iuv></previsao>
<previsao><dia>2021-12-23</dia>

L3=['c',
'<maxima>29</maxima><minima>19</minima><iuv>13.0</iuv></previsao><previsao><di
a>2021-12-23</dia>']

Weather = c
Rain

The following program shows a program using OpenWeatherMap API to query
weather conditions at Munich. Note that OpenWeatherMap returns a JSON (JavaScript
Object Notation), which should be handled differently from the XML. Moreover, we have
hidden the API key value and network name and key with a red pen mark.

This program also helps us discuss another BIPES feature: directly executing Python
commands inside blocks.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 70/96

Micropython has a function to handle data in JSON format automatically. However,
we have not prepared a block for that in BIPES. Thus, in two simple Python statements, we
can easily access any information on the JSON response:

variableJSON = request.json()
variableData = variableJSON[“item”][index][“subitem”].

In that way, we have created a function Get value from JSON that receives the
request as a parameter and internally runs these two Python statements mentioned above
and returns with the value of interest to the main program. It is snowing in Munich now!

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 71/96

Finally, the following figure shows the system running on a Franzininho WiFi board
(https://franzininho.com.br/), an open hardware board developed in Brazil and based on the
ESP32S2 processor. The board has an RGB LED powered by a USB power bank, showing
the current weather on its RGB LED, alongside a traditional “Weather Rooster.”

Optionally, it is even possible to include a LED matrix and present an umbrella or sun
icon, depending on the weather conditions. In the example below, a matrix of LEDs with
TM1640 controller was used, and each pixel of the matrix was defined in the “Custom Data
Matrix Layout” block of the BIPES.

These LED matrices can be found in the shield format, an accessory that fits directly
onto the ESP8266 board, avoiding the need for connection cables. In this case, the WeMos
D1 mini board was used with the shield TM1640 LED Matrix. The following figure shows the
blocks used to trigger the LED matrix and its result.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 72/96

https://franzininho.com.br/

HTTP Client: Other Possibilities
As mentioned, there are thousands of API options for integration through HTTP

requests. For example, we worked with the weather conditions API, but another helpful
service includes sending messages via telegram through the endpoint
https://api.telegram.org/bot<token>/sendMessage.

Another more advanced possibility is to add artificial intelligence and machine vision
functionalities to an embedded system through the help of machine learning web services.
Thus, even in an embedded system with limited computational resources, it is possible to
use all the processing power of cloud services. An example of a possibility is in systems for
analyzing images and identifying objects, people, and characters. Thus, a low-cost circuit,
such as an ESP32-CAM module, can capture a photo and send it via HTTP to a cloud
service. Google, Amazon, and IBM have advanced cloud image processing services, even
infer whether a person is happy or sad, among other features. The following figure shows an
example of a car license plate, which can be sent, via HTTP request, to the Google Cloud
Vision API. As a result, the Google service returns a list of the characters present on the
board. Note also that the system detected the phrase “MERCOSUL” present on the plate, in
its upper left part, in a small dimension. More information on using this API can be found at:
https://cloud.google.com/vision/docs/drag-and-drop.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 73/96

https://cloud.google.com/vision
https://cloud.google.com/vision
https://cloud.google.com/vision/docs/drag-and-drop

Note that this is an example of text recognition (also called OCR: optical character
recognition), but the system could include object recognition, emotions, and other features in
the image. You can also search the Internet for examples and projects using the
ESP32-CAM module with the Google Cloud Vision. The embedded system developer
community has already implemented and made available some options. These cloud
features can also be helpful in robotics, automated optical inspection (AOI), and
mechatronics applications. For more details on the use of integrated cloud with robots, a
reading possibility is:

Aroca, RV, Péricles, A., de Oliveira, BS, Marcos, L., & Gonçalves, G. (2012, June).
Towards smarter robots with smartphones. In the 5th workshop in applied robotics and
automation, Robocontrol (pp. 1-6). sn.

HTTP Server

BIPES also allows an ESP board to act as an HTTP server, enabling direct access
from any HTTP client, such as a web browser on a PC, a smartphone, or even another
ESP32 or ESP8266 board using the block HTTP GET Request.

The following figure shows the implementation of an HTTP server in BIPES. The
server is started on port 80 and continuously waits for HTTP requests from clients. When
accessed by its IP address, the server displays the reading of the analog input of the
ESP8266 board and offers two links to web pages on this server: /on and /off. Access to
these pages is checked by the blocks “IF Requested Web Page = on” (or off) and
generates a GPIO pin action to turn on/off the LED connected to pin D4. Using HTML codes,
it is possible to insert figures, text boxes to request data from the user, among other
possibilities for web / HTML development. The “Wifi Current IP” block was also used to

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 74/96

check the IP address of your card, making it easier to identify the IP to access the card from
other devices on your network.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 75/96

The result can be seen from a web browser, accessing the ESP board IP:

And, as mentioned, can be monitored by the Console:

In most cases, this webserver will only receive HTTP requests from devices
connected on the same WiFi network that the ESP board is running the HTTP server
application.

This limitation depends on the network architecture used: in most cases, the wireless
access point or router used obtains a unique Internet (IP) address from the Internet Provider
that is public and accessible to receive connections coming from the Internet. Such a router
or access point distributes internal/private IP addresses that are not accessible from any
other device on the Internet. These internal IPs are in the form 192.168.x.y, 172.x.y.z or
10.x.y.z. The single public IP is then shared with all internal devices through Network
Address Translation (NAT). Thus, as the ESP module has a private IP, for it to be accessed
from the Internet, it is necessary to configure a port forwarding strategy, which will be
presented in the next section.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 76/96

Anyway, even with the IP with access only on the internal private network, all devices
on the same network can access the ESP board’s web server. So the board's IP could be
configured, for example, in an application made in MIT App Inventor, allowing to integrate
smartphone applications with the ESP board through HTTP requests.

For more details about the NAT process and IP addressing, consult a specialized
book on computer networks, such as:

TANENBAUM, AS – Computer Networks – 4th Ed., Editora Campus (Elsevier)

Integration with Google Home or Amazon Alexa

The Internet of Things has seen significant growth in ​​home automation, also called
domotics. In this context, two devices, also embedded systems, offer high quality and
flexible personal assistant options: Google Home and Amazon Alexa. Among the various
features of these devices, the main one is the interaction with the user through voice
commands and responses, where the user can make requests by voice in a straightforward
way. For example, some possible commands that can be used are: “Schedule an
appointment”, “Turn on the light”, “Send a message to Matheus”, “Remind me to get my
clothes out of the washing machine in 10 minutes,” or “Make a phone call to Lilian”.

The flexibility of these personal assistants includes the possibility of integrating them
with new services and applications and customizing actions. We will use the IFTTT service
among the various integration possibilities: If This Then That (https://ifttt.com/), free for up
to 5 automation actions, called Applets. In addition, IFTTT offers hundreds of event options
(If This) that can trigger hundreds of other action options (Than That). In addition to
hundreds of options, IFTTT is also compatible with Google Home and Amazon Alexa. And,
in particular, IFTTT has the WebHook action that allows it to perform an HTTP request when
some event is detected: that is, the HTTP request is completed in the context of the action
(Than That).

Thus, it is possible to create an IFTTT Applet that waits for a phrase like “Turn on the
Light”, and when this phrase is spoken, it performs an HTTP request to the BIPES web
server embedded in the BIPES board itself. However, as already mentioned, the HTTP
server embedded by BIPES on the ESP board will be inaccessible to the IFTTT service
server, so it will be necessary to carry out a technical adjustment so that the request reaches
the ESP board. Below are two options for the data from Google Home or Amazon Alexa,
passing through the IFTTT, to reach the ESP board that controls the desired device.

Option 1: Port Forwarding

The following figure illustrates the architecture of a system where a voice command
made through Google Home results in turning an electrical appliance on or off through an

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 77/96

https://ifttt.com/

ESP8266 board. In the Figure, the user speaks the voice command that we defined as
“Shine my light”.

Thus, Google Home receives the voice command and sends (1) data to the IFTTT
server (2), a cloud service, which processes the command in its Applet and performs an
HTTP request (3) that is received by the ESP8266 board (4). Note that the data flow [(1) to
(2)] has a green arrow, where, in most cases, there are no restrictions for sending requests
from an internal private IP address to an external public IP address. However, the IFTTT
server request to the ESP8266 board [(3) to (4)] may not reach the ESP8266. For that to
happen, it is necessary to configure port forwarding in the router or access point or firewall
(we mentioned several or(s), as the architecture of each network might require different
configurations).

For this configuration, it is necessary to configure a TCP port forwarding from your
network’s public/external IP to the internal IP of the ESP8266 board. First, check your
network equipment manual and options. As an illustration, the following figure shows the port
forwarding configuration on a HUMAX integrated cable modem/router.

According to the setup that we already performed in the previous section, an
ESP8266 board received the private IP 192.168.0.23 and can be accessed, from the internal
network, at the address http://192.168.0.23/. Note that the HUMAX router has been
configured in Advanced Options → Forwarding, enabling a port forwarding from the external
address 0.0.0.0 (any external address) to the internal address 192.168.0.23. Furthermore, it
has also been configured to map the external port 8088 to the internal port 80 to the internal
IP 192.168.0.23.

The next step is to check what is your public IP address. One possibility is to search
Google for “what is my IP address”. Google itself will display an IP address identified as
“Your public IP address”. With port forwarding active, you can access your IP from anywhere
on the Internet, followed by port 8088. For example, if the IP is 187.66.80.187, use a web

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 78/96

http://192.168.0.23/off

browser to go to the address http://187.66.80.187:8088/. Next, ensure the HTTP server
program is active on the ESP8266 board. If you can access the board through this public IP
address, IFTTT will also access it.

Before proceeding, a little note: your public IP address can dynamically change after
a few hours, days, or weeks. This possibility of change may occur depending on your
Internet Service Provider (ISP). Therefore, if you need to use the system frequently, it is
interesting to configure a dynamic DNS service (https://www.noip.com/pt-BR), which will
provide you with a name on the Internet, such as myhome.noip.com. This name will
continuously be updated and synchronized with your public IP address, even if the IP
changes.

Now that we know the public IP to perform HTTP requests, we can configure the
IFTTT Applet. First, go to https://ifttt.com/ and create an account if you don't have one. It is
important to use the same email/account already used with your Google Home or Alexa. A
setup for Google Home is illustrated below, similar to Amazon Alexa. After creating the
account, click Explore and look for Google Assistant, as shown:

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 79/96

http://187.66.80.187:8088/
https://www.noip.com/pt-BR
https://ifttt.com/

Follow the following steps and confirm the association of IFTTT with Google Home.
This procedure only needs to be done once. Then it is possible to create an IFTTT Applet.
To do so, click on Create on the IFTTT main screen:

Click on “If This” and choose Google Assistant:

Choose the option “Say a simple phrase” and enter a phrase. In this example, we
use “Shine my light”. It is also possible to specify what the system will say in response to
this command through the field “What do you want the Assistant to say in response?”.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 80/96

Click Create trigger. Next, let's add the action to be done. Click on “Then That” and
choose Webhook and then select the option “Make a web request”.

In “Make a web request”, enter the full URL of the HTTP service that reaches the
ESP8266. The URL must include your public IP address with the resource path and
name—for example, http://187.66.80.187:8088/on or http://187.66.80.187:8088/off. The
figure below shows the URL http://XYZK/on, generically. Note that the correct public address
must be entered in this field. Also, choose the GET method for the HTTP request to be
performed.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 81/96

http://187.66.80.187:8088/on
http://187.66.80.187:8088/off
http://x.y.z.k/on

Finally, click Create action and then Continue, followed by Finish. Eventually, to
test it, go to Google Home and say: “Ok Google, Shine my Light!”.

Option 2: Integration with IFTTT through EasyMQTT

It may occur that the router/access point or firewall password is not available, and it
is not possible to configure port forwarding. Some ISPs may also end up not providing public
IPs to their customers or, for security reasons, offer Internet connections with very restrictive
firewalls, limiting the reception of Internet data streams that have not been initiated from their
network. For these and other cases, it is possible to integrate BIPES and IFTTT through the
webserver http://bipes.net.br of the BIPES project itself.

The following figure illustrates this system architecture: the user issues a voice
command “Shine my light” to Google Home (1) that requests the IFTTT server (2). IFTTT
then runs an Applet (3) that performs an HTTP GET request to the BIPES project's web
server (http://bipes.net.br) (4), publishing a value in a topic of an EasyMQTT BIPES session.
The BIPES server, in turn, updates that session (5) synchronously with the ESP8266 board,
which must be running a program subscribed in an EasyMQTT topic, which then receives
the data and performs an action (6).

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 82/96

http://bipes.net.br
http://bipes.net.br

Note that there is no HTTP server on the ESP8266 board this time, but only a
program subscribed to a topic of an EasyMQTT session. This program has already been
illustrated in the “Controlling Devices via the Internet” section. However, we present the
same program here again for ease of understanding. This program subscribes to the relay
topic of the EasyMQTTsession 4tzuu7 and, on any change in this topic, performs the action
(block “subscribe to the topic”).

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 83/96

Remember that we have already used a BIPES project server URL to change an
EasyMQTT session and control a device from a smartphone App made with MIT App
Inventor. The URL used for integration with a smartphone application was:

http://bipes.net.br/easymqtt/publish.php?session=4tzuu7&topic=relay&value=1

Now, this same URL can be used for the integration with IFTTT. The Applet IFTTTis
identical to the previous one, only changing the URL triggered by the IFTTT when the event
occurs:

Save the changes and test them by asking Google Home: “Shine my light”. In this
case, no port forwarding/packet forwarding configuration is needed, as in option 1. Hence,
the system works independently of the network configuration and properties, but it depends
on the BIPES server.

Note: remember that BIPES is an open and free project, and the session used as an
example here (4tzuu7) may be used by other users/readers, causing unexpected effects
(change in the state of a topic). So, define a unique session for your project. You can check if
an EasyMQTT session is empty/available via the URL:
https://bipes.net.br/beta2/easymqtt/getsession.php?session=12, where 12 is the desired
session to be verified.

Finally, it may be helpful to know that the IFTTT offers the option “View Activity”,
which allows you to check the records (logs) of reception of events and the results. In
particular, in the case of Webhooks, it is possible to check if the command was sent to the
server and the result of the HTTP request. The figure below shows an example of a request
made to the EasyMQTT server of the BIPES project.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 84/96

http://bipes.net.br/easymqtt/publish.php?session=vn28pd&topic=relay&value=1
https://bipes.net.br/beta2/easymqtt/getsession.php?session=12

Activity: server and client - remote control via WiFi

Use a pair of ESP8266 boards, programming one to act as a wireless access point and
HTTP server. Next, configure another as a WiFi station and client so that this second
board, the client, sends an HTTP request every time a digital pin is triggered (by a sensor,
a button, or other devices). When the board configured as a server receives the HTTP
request, it should switch an output pin to turn on/off any device. In this way, an ESP8266
board will act as a wireless remote control via WiFi of a device connected to the ESP8266
card acting as a “server”.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 85/96

* * * *

Congratulations!

You have developed complete Internet of Things (IoT)

applications with cloud, sensors, remote control, and

dashboards for visualization and control!

* * * *

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 86/96

Extra activities

Sending email

Activity:
Design a program that sends an email to you when a digital input pin (GPIO) on the
ESP8266 detects a change in your input signal (from 0 to 1, for example). This pin can be
connected to a presence sensor or an open door sensor (reed switch). Upon detecting the
change, the program must send the email.

Tips:
1. For this activity, the ESP8266 board must be connected to the Internet;
2. BIPES has a modular library system. For example, you need to install the uMail

library to send emails. The installation can be quickly done by accessing Network ->
EMAIL and then clicking on “Install mail library”.

a.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 87/96

3. After installing the library, you can use its launch blocks and email sending blocks:

a.

GMAIL

BIPES uses MicroPython's umail library, which allows it to send emails using virtually any
email provider. However, each provider may need specific settings.

Gmail, for example, requires you to create an application password so that ESP8266
can send emails directly. Thus, the GMAIL account must have 2-factor authentication
enabled and the “App Password” enabled.

The following link has a further explanation:
https://myaccount.google.com/apppasswords

At this link, select:

App -> Email,
Device -> Other

Gmail will generate a dedicated password for the ESP8266. Copy this password and
paste it into the Init uMail block.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 88/96

https://myaccount.google.com/apppasswords

Inertial Measurement Unit - MPU6050
If you have an MPU6050 inertial measurement unit, you can use it according to the

diagrams below and use the IMU / MPU6050 block:

The following table shows the connections:

MPU6050 ESP8266pin

GND GND

VCC 5V

SCL 5 (D1)

SDA 4 (D2)

Activity:
Build an IoT dashboard that shows the variation of board orientation angles in real-time
graphs.

Challenge:
Implement a program to calculate the angles (in this case, using accelerometers only) of
inclination in the three axes from the gravity acceleration measurements and prepare an
arrow on the IoT dashboard that indicates the tilt of the plate.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 89/96

RC Servo Motor (for model aircraft)

Activity:
Develop a program with an IoT dashboard containing a slider. When the user changes the
slider value, the servo should move to the angle set on the slider.

Tip: use the RC Servo Motor block on the left side toolbox Outputs and Actuators.

The following table shows the connections:

Servo ESP8266Pin

GND (brown) GND

VCC (red) 5V

S / Signal (orange) 15 (D8)

Challenge:
Implement a “gimbal” type system that adjusts the servo’s position as the angle measured
by the MPU6050 inertial unit (in this case, using accelerometers only).

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 90/96

Music
BIPES also offers blocks to generate sound tones and play complete songs! Check

blocks and options on the side toolbox Outputs and Actuators >> Sounds. About the
hardware to play a song, just use a buzzer.

To produce sounds, BIPES uses an external library. Go to the side tab Outputs and
Actuators >> Sounds, click Install rtttl library and then Install songs library. Two files will
be downloaded and installed in the boards’ memory for audio playback. The board must be
connected to the Internet to execute these commands.

After that, you can assemble a circuit with the ESP8266 board and a buzzer, as
suggested below:

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 91/96

Then you can play songs! Note that there is a library with several ready-made songs,
which you can use directly, or even include/create your songs by editing the songs.py file.

It is also possible to play a sequence of musical notes playing your music:

We have a video on YouTube with examples of some songs being played by an
ESP32 card: https://www.youtube.com/watch?v=a7U-sz70Wrg

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 92/96

https://www.youtube.com/watch?v=a7U-sz70Wrg

BIPES with other platforms

BIPES is available for several other platforms and offers several other possibilities,
including closed-loop PID control blocks, RFID, computer vision with OpenCV, among
others. So explore, enjoy, share and contribute to the project!

Python with Arduino - Snek
BIPES also works with Arduino, thanks to Snek Lang (https://sneklang.org/) by Keith

Packard. Check more at: https://bipes.net.br/snek-web-uploader/.

Others
BIPES supports multiple microcontroller platforms and SoCs (Systems on Chip), as

micro:bit, STM32, and others. BIPES can also be used with Raspberry Pi Pico boards with
MicroPython or Raspberry Pi (and similar) with Linux. In addition, BIPES was the first project
to allow block-based programming for the Raspberry Pi Pico. Check the BIPES project
website for more details and support hardware platforms: https://bipes.net.br/.

Getting help and helping
The BIPES project has a user support community on GitHub. If you have any

questions, criticisms, or suggestions, visit our community and feel free to ask, help, and
contribute to the project through the link:

https://github.com/BIPES/BIPES/discussions/

You can also contribute to BIPES in several ways. Learn more about the project at
https://github.com/BIPES and https://bipes.net.br/.

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 93/96

https://sneklang.org/
https://bipes.net.br/snek-web-uploader/
https://bipes.net.br/
https://github.com/BIPES/BIPES/discussions/
https://github.com/BIPES
https://bipes.net.br/

Final remarks

Embedded systems and Internet of Things (IoT) applications can be useful on many
occasions. BIPES aims to facilitate rapid prototyping of embedded and IoT applications and
contribute to more accessible and more intuitive access to programming these systems for
less experienced users. In addition, BIPES is also expected to increase the productivity of
experienced users.

Science, Technology, Engineering, Arts and Math (STEM or STEAM) projects can
benefit from BIPES. For example, it can contribute to educational robotics projects and
maker projects, offering intuitive programming, data collection, data storage, a visualization
platform, and eliminating the need to install software or make specific configurations,
facilitating its use in different types of computers and devices. It also offers a different way to
learn programming by code since block-based programs are automatically converted to
Python. In addition, the Python code can be edited, modified, and quickly tested.

In the academic environment, it can be used to automate laboratory experiments,
collect data, or facilitate laboratory practices that need some monitoring or automation.

This book was also based on the use of low-cost devices, such as ESP8266 and
ESP32 modules, already widely used in home automation, commercial, educational,
academic, and, in some cases, machine monitoring applications in industries, in the field,
and other environments.

Another pillar of the BIPES project is the MicroPython or its variant, the
CircuitPython. Although it is a version of Python optimized for microcontrollers, there are
several success stories of industrial applications using MicroPython and even space projects
based on MicroPython. The European Space Agency (ESA), for example, has a project to
use MicroPython in space applications . There are also several educational and robotics kits4

using MicroPython. For instance, educational satellite kits based on ESP32 processors, such
as educational satellites from PION, MySatKit, and IdeaSpace.

We hope this text was helpful, and we appreciate your attention!

4 https://essr.esa.int/project/micropython-for-leon-pre-qualified-version
__

Internet of Things using BIPES | 1st Edition | December/2021 | Page 94/96

https://essr.esa.int/project/micropython-for-leon-pre-qualified-version

Acknowledgments
The project BIPES integrates several open-source software tools: Google Blockly,

MicroPython, freeboard, CodeMirror, MicroPython libraries, esp-web-tools, among others.
The BIPES team leaves a big thank you to all the developers of these free tools. We thank
the BIPES project team colleagues, including Gustavo Tamanaka, for the project logo and
Caio Augusto Silva for implementing the EasyMQTT module. We are grateful to the project
Fritzing, which made the drawings and diagrams in this text possible. We are thankful for
the support of the Federal University of São Carlos through its Dean of Extension. We also
thank the National Council for Scientific and Technological Development of the Ministry of
Science, Technology, and Innovation (CNPq/MCTI) for supporting the BIPES project (CNPq
grant 306315/2020-3).

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 95/96

Block based Integrated Platform for Embedded Systems

http://bipes.net.br

Support:

An introduction to the Internet of Things and
Embedded Systems using block programming with
BIPES and ESP8266 / ESP32 (https://bipes.net.br)

December/2021 - 1st Edition

Rafael Vidal Aroca
Wesley Flavio Gueta
Jorge André Gastmaier Marques
Tatiana de Figueiredo Pereira Alves Taveira Pazelli

__
Internet of Things using BIPES | 1st Edition | December/2021 | Page 96/96

http://bipes.net.br
https://bipes.net.br

